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Symbol Description Value Unit

a First Angstrom coefficient - -

A, Anisotropy index — —

b Second Angstrom coefficient - -

c Speed of light in vacuum 2.998 x 103 ms !

d Day of year - -

Joiew View factor - -

Gon, Gy  Extraterrestrial radiation, nor-  — Wm 2
mal and on horizontal plane

Gy Total blackbody radiation - Wm 2

G Wavelength distribution of —
blackbody radiation Wm2um™!

G, Clear-sky irradiance - Wm 2

Gy Solar constant 1367 Wm 2

h Planck’s constant 6.626 x 10734 Js

H Total monthly irradiation - kWhm 2

H, Total monthly clear-sky irradia- — kWhm 2
tion

I Extraterrestrial radiation on — Wm 2
horizontal plane over a time in-
terval

I, It Global radiation on horizontal  — Wm 2

and tilted planes over a time
interval
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Iy, Iyr Beam radiation on horizontal — Wm 2
and tilted planes over a time in-
terval

1y, Igr Diffuse radiation on horizontal - Wm 2
and tilted planes over a time in-
terval

Iyr Ground-reflected radiation on -— Wm 2
tilted plane over a time interval

k Boltzmann’s constant 1.380 x 107  JK!

Lioe Local meridian — ©

L Standard meridian - ©

m Air mass - -

n Refractive index — -

R, Geometric factor — —

S Fraction of bright sunshine hours - =

ts Solar time — min

tor Standard clock time — min

T Temperature - K

15 Tilt angle - °

0 Declination — ©

v Azimuth angle — ©

K Clear-sky index - —

A Wavelength of electromagnetic — (m
radiation

w Hour angle — °

[0) Latitude - °

Py Wavelength distribution of pho- — sTim~2um™
ton flux

Pg Albedo of the ground - -

o Stefan-Boltzmann constant 5.670 x 107  Wm2K™

6, Angle of incidence on tilted - ©
plane

6. Zenith angle of incidence - °
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Preface

One of the challenges in solar engineering is that the availability of the
solar resource varies with time and location. An important engineering
task is to design solar energy systems that are able to collect as much
solar radiation as possible under these constraints. This book introduces
the basic properties of solar radiation that are required to understand
how the solar resource can be converted into useful heat and electricity,
and what the limitations are. It also shows how solar radiation on planar
surfaces can be modeled mathematically. This is useful when optimizing
the orientation of collecting surfaces and predicting the performance of
different system designs. The book builds upon lecture notes from solar
engineering courses at Uppsala University, carefully edited to suit a wider
scientific and engineering audience. The two authors have, together,
more than two decades’ experience of teaching, research and development
in the field of solar irradiance modeling.

Chapter 1 gives a short historical background to utilization of solar ir-
radiance. Chapter 2 reviews the most important concepts of black-body
radiation and electromagnetic radiation. Chapter 3 gives an overview
of the availability of the solar resource on Earth. Chapter 4 provides
the mathematical framework for modeling solar energy availability on
arbitrarily oriented, planar surfaces, based on measurements in the hor-
izontal plane. Review questions on the content as well as exercises are
included in chapter 5. Additionally, a derivation of the incidence angles
of beam radiation (not commonly explained in the available literature)
is presented in the appendix.

Uppsala, April 2019
Joakim Widén and Joakim Munkhammar
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Chapter 1

Introduction

The Sun has played an important role in human cultures throughout
history. Archaeological sources provide glimpses of sun-worshipping in
prehistoric societies and of early astronomical records in Mesopotamian
civilizations. The abundance of the Sun’s energy and its seasonal avail-
ability have naturally set the limits of human life and societal prosperity
and growth, governing the turn of seasons and the wheel of the year
in agrarian societies. However, direct use of solar radiation for specific
purposes such as heating and providing power, made its appearance rel-
atively late in history. The Greeks were aware of various optical phe-
nomena, and Archimedes is said to have used parabolic mirrors, perhaps
highly polished bronze or copper shields, to put fire to Roman enemy
ships outside Syracuse in 212 B.C.,! but more practical use of solar en-
ergy came with the scientific revolution [1, p. 386].

Starting in the 17th century, attempts were made not only to concentrate
sunlight but to also make it perform mechanical work. In the beginning of
the century, french physicist Salomon de Caus constructed the first proto-
type for a sun-fuelled steam engine using concentrating lenses. However,
these devices would be more accurately described as toys than usable
machines. In 1861 Augustin Mouchot, a French mathematics teacher,

'In the 18th century French naturalist Georges Buffon attempted a reconstruction
of the Archimedean myth and apparently managed to set fire to an old house using
around 150 mirrors at a distance of 60 meters. More modern reconstructions were made
both in 1992 and 2005, concluding that the effectiveness of the mirror tactic would have
been minor both in terms of manpower and inflicted damage [1].
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managed to produce enough steam to drive a small engine. After years
of research and development he succeeded in producing an engine large
enough to power a printing press, which was presented to the world at
the Universal Exhibition in Paris in 1878. Even if widespread use of
solar power was to take another one hundred-odd years to emerge, the
technology for producing mechanical work with the help of the Sun was
in place [1, p. 389].

The technology for producing solar electricity was also in place, by adding
a generator to Mouchot’s engine. In fact, the first solar power plant went
into construction in Egypt in 1912, but after the First World War oil
and coal provided more competitive means of producing electric power.
Instead, a completely different technology was to harness the solar ir-
radiance on a large scale. Soon after a breakthrough with silicon solar
cells at Bell Labs in the U.S. the first commercial photovoltaic (PV)
panels, called ”Solar Batteries”, were produced in the 1950s [1, pp. 392-
394]. The devices soon found their use in various products, ranging from
pocket calculators to satellites, but it was after massive subsidy schemes
were introduced in Germany and Japan in the 1990s that rooftop PV
systems connected to the power grid began to get widely used. Markets
expanded, prices gradually dropped and solar power began making its
way into power systems.

For all of these solar-powered devices, the properties of solar radiation
set the operational constraints. In the following chapters, we will give
you an understanding of basic solar radiation theory and how to use it
for quantifying the solar energy on any device, be it a polished bronze
mirror or a utility-scale solar power plant.
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Chapter 2

Black-body radiation and the Sun

This section reviews the fundamentals of electromagnetic and black-body
radiation that are required to understand the nature of the Sun and of
the solar radiation that reaches Earth. It also defines some important
concepts that are useful for practical applications of solar radiation.

2.1 The source of solar energy

The Sun, our closest star, is a spherical gaseous self-gravitating body
consisting mainly of hydrogen. It is located at the center of the solar
system, on average 1.5 x 10" m from Earth. At the inner core of the
Sun, the gravitational force creates a pressure which generates nuclear
fusion that turns hydrogen into helium. In this process a portion of the
mass is converted into an abundant amount of electromagnetic radiation,
which makes the Sun the dominant source of radiative energy in the
solar system. The Sun has a complex physical structure and consists
of several regions, from the dense inner core to the outer atmospherical
layer, the corona. Both the corona and the core are very hot, in the
order of 10° — 107 K, while the intermediate regions that transport and
emit energy as outgoing radiation are cooler (although hot by earthly
standards).

Energy from fusion reactions in the Sun’s interior is transported through
successive convection, radiation, absorption, emission and reradiation to
the Sun’s equivalent of a surface, the photosphere, which absorbs and
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emits a continuous spectrum of radiation. The photosphere is the source
of most visible radiation reaching Earth. It has a surface temperature,
or, more correctly, an effective black-body temperature of 5777 K (this is
the temperature of a black-body radiating the same amount of energy as
the Sun). Although it consists of several absorbing and emitting layers
and has a considerable temperature gradient across its radius, the Sun
closely resembles the ideal concept of a black-body, the properties of
which will be explored in the next section.

2.2 Planck’s radiation law

In order to understand the properties of the solar radiation reaching
Earth, it is useful to review some concepts of electromagnetic radiation
and the properties of black-bodies. Electromagnetic radiation can be re-
garded as a wave, characterized by its wavelength A. All electromagnetic
radiation travels at the speed of light ¢ (2.998 x 10® m/s) in a vacuum (or
c/n in a material with refractive index n) and has a frequency v such that
¢ = Av. By quantum mechanics, electromagnetic radiation can also be
regarded as a flux of photons, where the energy content in each photon
depends on the frequency. In electromagnetic radiation with a certain
wavelength A a photon has the energy

E=hy= % (2.1)

where h is Planck’s constant (6.626 x 1073* Js).

The radiation emitted from a hot object like the Sun, or any object
for that matter, is distributed over a range of wavelengths and, conse-
quently, consists of a flux of photons with different energy content. The
distribution of radiated energy over wavelengths, as well as the total
energy flux, depends on the temperature of the object. This can be ap-
proximated with a black-body, which is an idealized state of an object
in thermodynamical equilibrium, where the object is a perfect absorber
and emitter of radiation. That is, it absorbs all the radiation incident on
it and emits the maximum possible amount of radiation. Based on both
quantum mechanics and thermodynamics a black-body can be described
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by Planck’s radiation law, where the wavelength distribution of radiation
emitted from a black-body with temperature 7' is given by:

2mhc?

AP (eA}LCT — 1)

where k is Boltzmann’s constant (1.380 x 1072 JK™1). Gy is often given
in units of Wm=2um~!. We can also express this distribution in terms
of photon flux by dividing the emitted power at each wavelength by the
corresponding photon energy:

G\ =

(2.2)

A
Oy = —G 2.3
br = 7 -G (2.3)

By differentiating the distribution in Equa-
tion 2.2 with respect to wavelength and equating to zero, the wavelength
corresponding to the maximum of the distribution can be found. The
relation between this wavelength and the black-body temperature is

in units of s 'm~?um~1.

Amax] = 2897.8 pmK (2.4)

which is known as Wien’s displacement law and states that the maxi-
mum wavelength is inversely proportional to the temperature. Another
useful relation, which can be obtained by integrating Planck’s law over
all wavelengths, is the Stefan-Boltzmann equation. It expresses the total
emitted black-body radiation:

Gy = / Gpnd\ = oT? (2.5)
0

where o is the Stefan-Boltzmann constant (5.670 x 1078 Wm2K™). G,
is in units of Wm™2. Note that this is also the unit most often used for
incident solar radiation.

The latter two equations tell us something fundamental and familiar
about heated objects: the Stefan-Boltzmann equation shows that the
total radiated power increases with the temperature of the object and
Wien’s displacement law shows that the peak wavelength decreases with
increasing temperature, which, for example, causes metals to glow brighter
as they get hotter.
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Figure 2.1: Wavelength distributions of electromagnetic radiation from black-bodies
with different temperatures, determined from Equation 2.2. Note the logarithmic scale
of the vertical axis in (b).



Chapter 2. Black-body radiation and the Sun 13

These two properties of black-body radiation are shown in Figures 2.1(a)
and 2.1(b). Both figures show the spectral distribution of the thermal
radiation from a black-body with a temperature of 6000 K (approxi-
mately the surface temperature of the Sun). If the Sun were a true
black-body, this is what we would expect its radiation distribution to
look like. The figures also show black-body radiation curves at lower
temperatures. Figure 2.1(b) (note the scale on the y-axis) clearly shows
the difference between radiation from a black-body with a temperature
of 6000 K and one with 400 K (127 °C), which is closer to temperatures
encountered in our daily environment.

2.3 The solar constant

Let us now turn to the actual solar radiation that reaches Earth’s atmo-
sphere. How much radiation is there and how is it distributed over the
wavelengths? To start with, we note that solar radiation levels in the
solar system drop with the square of the distance to the Sun. To real-
ize this, assume that the Sun’s radius is r and its surface temperature
T. The surface area of the Sun is then 47r? and the total radiative flux
from the Sun is, using the Stefan-Boltzmann equation, o7 x 4772, Now,
the surface of a larger imaginary sphere with radius [ with the Sun at
its center will receive the same amount of radiation, but over the larger
area 4ml?. Consequently, the energy flux per unit area at the distance [
from the Sun is s g .
G =T =T’ (—) (2.6)
If you use the black-body temperature of the Sun (5777 K), the radius
of the Sun (6.957 x 10°® m) and the distance between the Sun and Earth
(1.495 x 10" m), you will get the average radiative flux just outside
Earth’s atmosphere, per unit area facing the Sun: 1367 W/m?2. This will
be denoted by G,. and is called the solar constant, or the air mass zero
(AMO) radiation.

G 18 not determined experimentally in this way but the other way
around: it is the Sun’s surface temperature that is inferred from mea-
surements of G at Earth by using Equation 2.6 solved for the black-body
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temperature T'. Estimates of G,. have gradually improved by radiation
measurements outside the atmosphere using aircraft, ballons and space-

craft. The value 1367 W/m?, adopted by the World Radiation Center
(WRC), is commonly used in the solar engineering literature [2].

Through measurements it is also possible to determine the spectral distri-
bution of the AMO radiation. Figure 2.2 shows the standardized WRC
spectral irradiance curve, obtained from high-altitude and space mea-
surements. The spectral distribution of the AMO radiation follows closely
the shape of the black-body radiation curve that is obtained from evalu-
ating Planck’s law close to the surface temperature of the Sun (cf. Fig-
ure 2.1). The dissimilarities in the spectral distributions are due to
absorption in the cooler, upper parts of the Sun’s photosphere.

N
T

=
(6}
T

Solar spectral irradiance (W/m an)
o
o1
T

o | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Wavelength (nm)

Figure 2.2: The standard WRC spectrum of AMO radiation. Data obtained from
NREL, USA [3].

Due to Earth’s elliptic orbit around the Sun the actual solar radiation
outside the atmosphere at a given time (the extraterrestrial radiation)
will differ from G,. Over the year, it varies from 1412 W/m? at the
beginning of July to 1322 W/m? at the turn of the year; a 3.3% variation
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from the mean value. This can be expressed mathematically as

d
Gon, = G (1 +0.033 x cos (360%)) (2.7)

where d is the day of the year. The subscript 0 denotes zero air mass
(AMO) and the subscript n indicates that the radiation is on a plane
normal to the Sun-Earth axis.

2.4 Categorization of radiation

Based on properties and field of applications, electromagnetic radiation
is categorized into wavelength bands. Figure 2.3 shows some common
classifications in the ranges relevant for solar engineering purposes. The
vast majority of solar radiation is in the wavelength range of approxi-
mately 0.3 to 3 um and spans parts of the ultraviolet (UV) and infrared
(IR) ranges. A simpler classification of the wavelengths of importance
in solar engineering is to divide the spectrum of solar and IR radiation
into short-wave and long-wave radiation. Short-wave is the same as so-
lar radiation and long-wave is everything with longer wavelengths. For
the purpose of solar collectors it is a useful fact that the incident solar
radiation in the short-wave range and the emitted radiation from solar
collectors in the long-wave ranges do not overlap significantly. This is
beneficial because it makes it possible to design materials and devices
that have entirely different properties for short-wave solar and long-wave
thermal radiation.
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Wavelength (um)
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Figure 2.3: Some common wavelength bands in the spectrum of electromagnetic radi-
ation.
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Chapter 3

Available solar radiation on Earth

Extraterrestrial radiation is affected in various ways during passage through
the atmosphere. This section reviews these mechanisms and describes
the properties of the solar radiation available at Earth’s surface. A short
discussion on the radiation and energy balance of Earth is also included.

3.1 Atmospheric attenuation

When passing through the atmosphere, solar radiation with normal inci-
dence is subject to two sources of attenuation: scattering and absorption.

Scattering occurs when the radiation interacts with air molecules, water
and dust in the atmosphere. The degree of scattering is determined by
the wavelength of the radiation in relation to particle size, the concen-
tration of particles in the atmosphere and the total mass of air that the
radiation has to travel through. The most important process is Rayleigh
scattering, in which light is scattered off air molecules. This type of scat-
tering is most effective for shorter wavelengths in the blue end of the
spectrum, mainly those shorter than 0.6 pm. This scattering process
explains the blue color of the sky at daytime, the yellow color of the
Sun and the reddening of the sky at night. This occurs because most
of the radiation reaching the ground from other directions than directly
from the Sun has been scattered by Rayleigh scattering. Note that a
significant amount of the scattered light is redirected back into space.
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Absorption of solar radiation occurs in the UV range due to ozone and
in the IR range due to water and carbon dioxide. In the process of
absorption, the solar radiation is converted to heat, which is emitted by
the particles as long-wave radiation.

The effect of Rayleigh scattering is quite large and wavelength-dependent,
as can be seen in Figure 3.1.
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Figure 3.1: The AM1.5 spectrum in relation to the AMO spectrum and the 6000 K black-
body radiation distribution weighted as in Equation 2.6. The drop in peak intensity
at roughly 500 nm is due to Rayleigh scattering, the other dips are due to absorbtion
from oxygen (Og), ozone (Oj3), water (H2O) and carbon dioxide (CO;). The AM1.5
spectrum is specified by the National Renewable Energy Laboratory (NREL), USA [3].

3.2 Air mass

Attenuation of solar radiation depends on how far the radiation has to
travel through the atmosphere. The longer the path length, the more
particles the light has to interact with. This varies over the year and
over individual days, with the longest path in the evenings, when the
Sun is close to the horizon. The path length is described by the air
mass. Formally, air mass is the ratio of the atmospheric mass through
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which the radiation passes from the Sun’s current position in the sky,
to the mass that it would pass through if the Sun were at the zenith
(directly overhead). For example, at air mass 2, the path length through
the atmosphere is two times longer than if the Sun were directly overhead.
If the zenith angle, i.e. the angle from overhead to the Sun, is denoted
by 6., the air mass is to close approximation

1
cos b,

m = (3.1)
0. < 70° as shown in Figure 3.2. For higher angles the curvature of Earth
becomes influential. For 6, = 85° the error is 10%. A more thorough
discussion of air mass can be found in [4].

[l
T 777777777777

Figure 3.2: Atmospherical path length D of solar radiation at zenith angle 6,.

Because the atmospheric conditions vary over time, a standard spectrum
for radiation at ground level is needed for development and testing of so-
lar devices. The accepted standard is the distribution for m = 1.5, the
AM1.5 spectrum, which corresponds to a zenith angle of 48.2°. Figure 3.1
shows the so-called AM1.5 spectrum and compares it to the extraterres-
trial WRC spectrum and a 6000 K black-body distribution.

3.3 Radiation components

Because of scattering, radiation on Earth’s surface consists of two com-
ponents. Part of the incoming radiation is preserved as beam radiation,
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while the rest is scattered in the atmosphere and is either reflected back
into space or reaches the ground as diffuse radiation. In contrast to beam
radiation, which has a well-defined direction, diffuse radiation originates
from all over the sky dome. Although diffuse radiation is most intense
near the Sun, a good approximation is to assume that it is isotropic, i.e.,
uniformly distributed on all directions.

The proportions of diffuse and beam radiation are strongly dependent
on weather conditions. In sunny weather with clear skies, some 10-
20% of the radiation is diffuse. In cloudy weather with a lack of bright
sunshine most of the incident radiation is diffuse. Figure 3.3 shows these
proportions on two days in Norrképing, Sweden (59°35'31” N 17°11'8”
E). Over the year, the total diffuse part can be significant. For example,
in Norrkoping, between 1983 and 1998, the diffuse share of the total
radiation was 51% on average. As a comparison, in one of Sweden’s
most sunny locations, Visby (57°38'5” N 18°17'57” E), the diffuse part
was still 47% for the same years [6].

July 3, 2008 July 8, 2008
1000 | 1000 |

Global
—— Diffuse

Global
—— Diffuse

800 [ 800 [

600 600

W/m?
Wim?

400 400

200 200

. ) 0 . )
00:00 12:00 24:00 00:00 12:00 24:00
Time Time

Figure 3.3: Global and diffuse radiation on the horizontal plane in Norrkoping, Sweden,
on two summer days in 2008, one clear day (left) with a few moving clouds in the
afternoon and one completely overcast day (right). On the clear day the diffuse fraction
was 14.2%, on the overcast day it was 99.7%. Note that the time here is UTC, i.e.
Swedish standard time minus one hour (minus two hours including summer daylight
savings time).

In addition, diffuse radiation has a different spectrum than beam radia-
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tion. The high-frequency part of the spectrum is more pronounced be-
cause Rayleigh scattering mainly affects shorter wavelengths. However,
for most practical purposes the spectral distribution can be assumed to
be the same as for beam radiation.

A third radiation component that has to be considered in solar energy
applications is radiation reflected from the ground and from other sur-
rounding objects onto a sloped surface. It depends on the reflectivity of
the ground, the so-called albedo.

3.4 Temporal and geographical variations in solar energy avail-
ability

Solar energy variability is fundamental to life on Earth as we know it.
Due to Earth’s tilted axis with respect to its orbit around the Sun, the so-
lar energy availability varies over the year, giving rise to seasons. Because
Earth rotates around its own axis, we have nights and days. Figure 3.4(a)
shows Earth’s tilt relative to the Sun at three particular points in time.
On the summer solstice, the Northern Hemisphere is tilted maximally
towards the Sun and experiences its longest day of the year. On the
winter solstice, the Northern Hemisphere is tilted maximally away from
the Sun and the day is the shortest of the year. Midway between the sol-
stices are the equinoxes, where Earth’s axis of rotation is perpendicular
to the Sun and the Northern and Southern Hemispheres receive equal
amounts of radiation.

The daily movement of the Sun across the sky for a latitude of 60°
N, passing near by Norrkoping, Sweden, on the same days is shown
in Figure 3.4(b). At the summer solstice, the Sun reaches its highest
position in the sky and at the winter solstice its lowest. Note also that
at the equinoxes the Sun rises exactly in the east and sets exactly in
the west (£90°). During the summer half-year the Sun rises north of
west (in the Northern Hemisphere) and sets north of east (if we are not
above the Arctic Circle where the Sun sometimes does not set at all),
and during winter it rises and sets south of east and west. How long the
Sun is up and at which height (higher elevation means lower air mass)
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directly affects how much solar energy is maximally available each day.
These seasonal and daily variations are completely predictable and form
part of the mathematical framework outlined in Chapter 4.

These variations aside, there are also those caused by cloud movements
and a varying turbidity (transparency) of the atmosphere. The short-
term irradiance variability that is caused by moving clouds can be con-
siderable for a point location (cf. Figure 3.3), but over a larger area or
a set of distributed surfaces the variations are smoothed out because all
locations are not cloud-covered at the same time. Clear days, as well
as completely overcast days, experience no significant short-term vari-
ability. Over the year, these stochastic variations tend to even out, but
depending on the location there could be more consistent variations in
cloudiness that may adversely affect certain seasons or parts of the day.

The solar radiation variability on Earth’s surface due to cloudiness can
more easily be quantified if the clear-sky irradiance is used to normalize
it. This is called the clear-sky index and is defined as:

K= — (3.2)

where G is the global horizontal irradiance and G. is the clear-sky irra-
diance over some period of time. An example histogram of the clear-sky
index based on nearly instantaneous (1-s) solar irradiance data from a
pyranometer network on the Island of Oahu, Hawaii [5], and estimated
clear-sky irradiance data (for solar elevation angles above 20 degrees to
avoid effects of low solar elevations), is shown in Figure 3.5. The clear-
sky index distribution varies between locations, but typically has two
pronounced peaks, one at around x = 1, which corresponds to bright
sunshine, and one peak at around x = 0.5 which typically corresponds
to overcast cloudiness. Values of k above 1 correspond to irradiance
levels higher than for bright sunshine, and this occurs when sunlight is
reflected off clouds. This effect is called cloud enhancement, which can
also be seen in Figure 3.3 where there is a high peak exceeding the regular
clear-sky pattern on the mainly clear day when clouds pass by.

Although the solar irradiance varies over time and location, there are
measures which are preserved for each location over time when the radi-
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Figure 3.4: Seasonal and daily variations in Earth’s tilt relative to the Sun and their
impact on the solar altitude and azimuth. In (a) Earth’s tilt with respect to the
direction of incident solar radiation is shown at the summer solstice, the equinoxes
and the winter solstice. The corresponding declination (the angle between the Sun’s
position and the equatorial plane) is shown. In (b) the corresponding Sun charts are
shown at latitude 60° N. The solar altitude angle is 90° — 6,.
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Figure 3.5: Histogram of the near-instantaneous clear-sky index, determined from 401
days 1-s resolution global horizontal irradiance measured in Oahu, Hawaii, in 2010 and
2011 [5].

ation is averaged over a certain time period. A typical example of this
is the Angstrom equation [2, p.64]:

gc — 0408, (3.3)
This equation relates the total irradiation H over a longer period (typi-
cally monthly), the total clear-sky irradiation H,., and the fraction S of
number of bright sunshine hours relative to the total number of potential
sunshine hours. In this equation a and b are set by local conditions and
can be estimated by measuring A, calculating H. and obtaining a linear
fit to S. For Stockholm, Sweden (59°19'46” N 18°4’7” E), the parame-
ters were estimated by Angstrém to a = 0.235 and b = 0.765 [7]. The
equation is named after the meteorologist Anders Angstrém (1888-1981),
not to be confused with his grandfather the physicist and solar spectrum
researcher Anders Jonas Angstrom (1814-1874) [9].

The Sun’s movements across the sky in combination with the local cli-
mate, weather and terrain conditions make the solar resource vary geo-
graphically. There is a consistent variation with the latitude, with less
energy available in the north and more in the south, but also latitude-
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independent variations that are due to weather and terrain. In general,
more solar energy is available in coastal regions and less in mountainous
areas.

3.5 Earth’s energy balance

Solar radiation is the most important source of energy on the planet.
Other sources include geothermal energy and tidal energy resulting from
the moon’s gravitational pull, but the flux of solar energy is very high
in comparison. Around 130 000 Gtoe (toe = tonnes of o0il equivalents)
reach Earth every year, while the contribution from geothermal energy
from Earth’s mantle is 19 Gtoe and from tidal energy 2 Gtoe [8§].

An intricate energy balance between incoming and outgoing radiation is
maintained on Earth. Almost one third of the incident solar energy is re-
flected back into space, while the rest is absorbed in the atmosphere, by
oceans and in inorganic and organic matter on Earth. The absorbed solar
energy drives meteorological and hydrological processes such as winds,
waves and ice melting, and it fuels photosynthesis in the biosphere. The
total radiation balance is maintained by outgoing long-wave radiation
emitted from Earth’s surface. Part of this radiation leaves Earth while
a substantial part is re-radiated back to Earth. This cycle of surface
radiation and back-radiation by the atmosphere is maintained by the
greenhouse gases. A simplified outline of this complex balance is sum-
marized in Figure 3.6.

Atmospheric damping by absorption influences both solar radiation reach-
ing Earth and thermal emission from the ground. Most solar energy can
be transmitted to ground level, due to a gap in the atmospheric absorp-
tion, with the exception of the UV and IR parts of the solar spectrum,
which are strongly damped (cf. Figure 3.2). Thermal radiation is ab-
sorbed by the atmosphere, except in the 8-13 pym range. This is the
so-called atmospheric window (cf. Figure 3.6), which is the main chan-
nel for loss of gained energy from Earth’s surface. Absorption in this part
of the spectrum is dominated by COs and HyO. Consequently, increased
concentrations of greenhouse gases in the atmosphere cause the atmo-
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spheric window to narrow, which is the main issue of global warming.
The main point with this short account is that ambient radiation and
natural systems’ response to it are spectrally selective, which is crucial
and fundamental to life on Earth, but also something that can be utilized
in engineering of solar devices. A more thorough discussion can be found
in [12].
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Figure 3.6: The radiation and energy balance of Earth. Based on [11].
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Chapter 4

Quantifying available solar energy
on planar surfaces

Solar energy systems typically have a receiving surface that collects so-
lar radiation, e.g., a PV array or a solar collector. In order to optimize
the orientation of this surface, we must be able to estimate how much
solar energy differently oriented surfaces collect. This is complex be-
cause the Sun is moving across the sky and seldom faces a fixed surface
directly, and because the different radiation components (beam, diffuse
and ground-reflected) reach the surface from different angles. Varying
weather conditions also make the availability of these different compo-
nents differ from one time to another. For a reliable yield calculation, we
must be able to convert commonly available hourly solar radiation data
on the horizontal plane to radiation on a sloped, planar surface.

The aim of the following sections is to provide a mathematical frame-
work for converting solar radiation measured on the horizontal plane to
radiation on an arbitrarily oriented planar surface. This set of equations
is often used in professional software for simulation and optimization of
solar thermal or photovoltaic systems based on measured horizontal irra-
diance. It is also very useful for understanding the important parameters
that influence collection of solar energy on a surface. These and other
radiation formulae and mathematical models are discussed in more depth
in [2].
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4.1 Measured solar irradiance data

Determination of solar irradiance on tilted surfaces typically starts from
measurements in the horizontal plane. Solar radiation is commonly mea-
sured by two main classes of instruments: pyrheliometers and pyranome-
ters. A pyrheliometer measures solar radiation coming directly from the
Sun and a small portion of the sky around the Sun at normal incidence.
In this device sunlight typically enters through a window to a thermopile
(a device that converts heat to electricity). The electrical signal that is
generated can be recorded and converted into W/m?. The window of the
pyrheliometer acts as a filter that only lets through sunlight in the 0.3-3
(m range.

The pyranometer measures total hemispherical (diffuse plus beam) solar
radiation, usually on the horizontal plane. This means that the device
must give an unbiased response to radiation from all directions. It con-
sists of a thermopile sensor that is horizontally oriented and a glass dome
that limits the wavelength range, as in the pyrheliometer. The glass dome
preserves the 180° view and shields the thermopile from air convection.
Schematic illustrations of a pyranometer and a pyrheliometer are shown

in Figure 4.1.
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Figure 4.1: A schematic illustration of a pyranometer (a) and a pyrheliometer (b),
based on [9] and [10].
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While pyrheliometers only measure normal-incidence beam radiation,
global or diffuse radiation can be measured with pyranometers. To mea-
sure diffuse radiation a shading ring is attached to the pyranometer to
block beam radiation. A correction factor is then used to compensate
for the loss of view. Beam radiation on the horizontal surface can indi-
rectly be measured by two pyranometers, one measuring diffuse and one
measuring global, and then be obtained as the difference between global
radiation and diffuse radiation.

In the following, we will deal with average radiative flux over some period
of time, typically one hour, which is how monitored data are available.
This means that the available radiation is integrated over both time and
wavelengths. We will denote integrated and averaged radiation by the
letter I:
1 &
to — 11 Jy,

G(t)dt. (4.1)

Monitored radiation is available in time series, and the equations below
are all applied one time step at a time. The time ¢ always refers to the
midpoint of the monitored time interval:

b=t (4.2)

2
We will assume that we have the beam and diffuse radiation components
I, and I; on the horizontal plane. From these we want to obtain the
beam, diffuse and ground-reflected radiation components Iyp, I;r and
I,r on a tilted planar surface. Expressed in global radiation we wish to

go from radiation on the horizontal plane:

I =1+ 1, (4.3)
to radiation on the tilted plane:
IT = [bT + IdT + ]gT- (44)

The basic strategy is to find the incidence angles of radiation on the
horizontal and tilted surfaces, which are used to weight beam radiation,
and the view factor of the tilted plane, which determines the incident
isotropic radiation on the tilted plane.
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4.2 Solar time

In all of the following equations we use solar time, which is different from
standard clock time. In fact, the Sun is a bad time-keeper, at least when
precision within the hour is required. This is because the Sun’s apparent
movement across the sky is not uniform. Rather, since Earth’s orbit is
elliptic and Earth is tilted with respect to the orbit, the Sun appears
to speed up and slow down over the year, sometimes being ahead of a
regular clock, sometimes behind, up to as much as 16 minutes. This
can be corrected for by a factor called the equation of time. On top
of this, standard clock time is set uniform across individual time zones.
These zones vary in width, but the widest can take the Sun several hours
to cross, which gives substantial differences between standard and solar
time for locations far from the standard meridians. Correcting for all of
this, the solar time is, in minutes,

ts - tst - 4(Lst - Lloc) + E(d)a (45)

where t is the standard time in minutes after midnight, L is the stan-
dard meridian and L;,. is the longitude of the location. The second term
makes use of the fact that the Sun transverses 1° of longitude in four
minutes. We have to be careful with the sign in front of this term, which
here holds for longitudes counted positive east. F(d) is the equation of
time for day d of the year, in an empirical formula from [4]:

E(d) = 229.18(0.000075 + 0.001868 cos B — 0.032077 sin B
—0.014615 cos 2B — 0.04089sin 2B) (4.6)

where
360
B=(d—-1)—. 4.7
(A= 1)5 (1.7)
Note that daylight savings time introduces yet another one-hour differ-
ence between standard clock time and solar time that has to be corrected
for.
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4.3 Solar angles

In order to make conversions between horizontal and tilted planes, it is
necessary to know the geometric relationships between the planes and
between the planes and the Sun at any instant of time. A set of angles,
defined below and shown in Figure 4.2, are used to define these relation-
ships. First, we have the constant angles defining the orientation and
location of the tilted plane:

e /3, tilt of the plane with respect to the horizontal, 0° < < 180°

e ~, azimuth angle of the tilted plane, zero due south, west positive,
—180° < v < 180°

e ¢, latitude of the location, north positive, —90° < ¢ < 90°

Second, we have the two time-varying angles that define the position of
the Sun relative to the celestial sphere! and Earth:

e 0, declination of the Sun, the ”vertical” position of the Sun on the
celestial sphere, measured in degrees above or below the celestial
equator, north positive —23.45° < ¢ < 23.45°

e w, hour angle, the angular displacement of the Sun relative to the
local meridian, zero at noon, afternoon positive, —180° < w < 180°

The declination makes a complete cycle in one year and can therefore be
modeled with reasonable accuracy as a function of the day of the year d:

284 +d
0 = 23.45sin | 360——— | . 4.8
sin ( G ) (4.8)

The hour angle, which is the measure of time in the equations, is de-
termined from the time of the day. It makes a complete cycle over 24

"The celestial sphere is an imaginary sphere surrounding Earth, on which all celestial
objects are projected. When Earth moves around the Sun, it views the Sun against
this backdrop of surrounding space. From the viewpoint of Earth, the Sun continuously
traverses the celestial sphere, making a complete path across it in one year. This path
is called the ecliptic. The celestial equator is the projection of Earth’s equator on the
celestial sphere.
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Celestial
equator

Figure 4.2: Solar angles used in the calculations. In (a) the angles that define the
location and orientation of the tilted plane are shown. These are the plane tilt 3, the
azimuth angle v and the latitude ¢. Also shown are the longitude L;,. and the zenith
angle 0,. In (b) the angles defining the Sun’s position relative to Earth and the celestial
sphere are shown; the declination ¢ and the hour angle w.
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hours. Since the Sun is displaced 15° westward each hour due to rotation
of Earth around its own axis and is zero at solar noon, the hour angle is

ls
= 15(—=—12 4.9

where £, is the solar time of the day in minutes.

From these angles, we can find:

e 0, angle of incidence, the angle between the normal to the tilted
plane and the beam radiation on that surface, —180° < 8 < 180°.

The angle of incidence is related to all the other angles according to the
following equation:
cos =sin d sin ¢ cos 3

— sin d cos ¢ sin [ cos 7y

+ cos d cos ¢ cos 5 cos w (4.10)

+ cos 0 sin ¢ sin 3 cos 7y cos w

+ cos 0 sin 3 sin y sin w.
For a horizontal plane, the plane tilt § = 0, and the above relationship
is simplified accordingly. The resulting angle of incidence 6., the zenith
angle, which we have already encountered in the discussion on air mass,

satisfies
cos f, = cos ¢ cos 0 cos w + sin ¢ sin d. (4.11)

For a derivation of these equations for § and 6., see Appendix A.

4.4 Extraterrestrial radiation

For many radiation calculations it is useful to know the extraterrestrial
radiation on the horizontal plane. We have already seen that extraterres-
trial radiation with normal incidence can be expressed by Equation 2.7.
To obtain the radiation on the horizontal plane, simply multiply by the
cosine of the zenith angle:

360d
Go = G, (1 + 0.033 cos 36E ) cos .. (4.12)
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An explanation of why this weighting provides the radiation on the hori-
zontal plane is given in Figure 4.3. To obtain the average extraterrestrial
radiation in a whole time step we would have to integrate this between
the endpoints of the interval. However, as a good approximation we will
assume

[0 ~ Go, (413)

which means we pick the instantaneous value for the midpoint of the
time interval.

Figure 4.3: Conversion between extraterrestrial radiation with normal incidence and
extraterrestrial radiation on the horizontal plane. In the triangle ABC, defined by
the plane perpendicular to the radiation, the horizontal plane and the path of the
radiation, the length of side AC is a factor cos @, shorter than the side AB. This holds
also for sections of the triangle sides defined by parallel rays of radiation (as indicated
by the sections with lengths [ and [ cosf,). Consequently, the same amount of radiation
incident on a unit area on the normal plane will reach an area 1/ cos 6, on the horizontal
plane, which means the radiation on the horizontal plane is a factor cos @, less intense.
Note that this relation holds for all beam radiation and all planes.

4.5 Beam radiation on tilted surfaces

When converting beam radiation between planes we use the geometric
factor R;, which is defined as the ratio of beam radiation on the tilted
plane to beam radiation on the horizontal plane:

D

= —. 4.14
Ry T (4.14)
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Following the same reasoning as in Figure 4.3, we find that if I, denotes
the beam radiation on a plane perpendicular to the incident radiation,
then Iy = I, cos 0 and [, = I, cos6,, and consequently,

~ Iy,cosf  cosb

Ry = = . 4.15
b Iy, cosf, cosb, ( )

We can then express beam radiation on the tilted plane as
Iyr = Ryl (4.16)

An Ry value evaluated at the midpoint of a time interval is used as rep-
resentative of the whole interval. As mentioned in [2], this is often a
good-enough procedure for hourly values. The conversion is only per-
formed when the Sun is above the horizon. Thus, R} is defined as above
when both cosf > 0 and cosf, > 0, and is zero otherwise. One thing to
be cautious about is the risk of getting unrepresentative values of R; on
intervals involving sunrise and sunset when cos 6, is close to zero, which
may cause highly unrealistic morning or evening radiation peaks.

4.6 Diffuse radiation on tilted surfaces

Now that we can handle beam radiation, we need some similar weighting
for scattered diffuse radiation. If we assume that the diffuse radiation
from the sky is purely isotropic, this weighting factor is:

1+ cosf
fview,sky = —2 (417)

which is the sky view factor of the surface and describes how much of the
sky is visible to the surface. It is easy to see that this expression makes
sense, noting, e.g., that fiewsy = 1 when the surface is horizontal,
Jiew,sky = % when it is tilted by 90° and fyicw sy = 0 when it is facing
the ground. Analogously, the view factor to isotropic radiation from the
ground can be found as

1 — cos
fview,ground - TB (418)
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The diffuse radiation component is normally considered to consist of
three parts — isotropic diffuse, circumsolar diffuse and horizon brighten-
ing — which differ in their origin in the sky. The isotropic diffuse part
is uniform from every direction, the circumsolar diffuse part is concen-
trated around the Sun’s position in the sky and horizon brightening is
concentrated near the horizon. Different models have been formulated
to describe diffuse radiation on the tilted plane. For this compendium
the so-called Hay and Davies model was chosen. Besides treating part
of the diffuse radiation as isotropic, it also models circumsolar radiation.
As has been shown in [13], the Hay and Davies model performs similarly
to other, more complex models.

In the Hay and Davies model, diffuse radiation on the tilted surface is
expressed as

L = I, {(1 A (@) + Ain] (4.19)

where the anisotropy index A; is defined as the ratio between the incident
beam radiation [ and the extraterrestrial radiation [ on the horizontal

plane:

I
A== (4.20)
I

Thus, since [ is the incident radiation that would be theoretically pos-
sible if there was no atmosphere, A; is the fraction of radiation that is
preserved as beam radiation after it has passed through the atmosphere.
Under clear conditions, I, approaches I, causing A; to be close to 1, and
the diffuse is treated in the same way as beam radiation:

IdT ~ Ide. (421)

When there is no beam radiation, A; is zero, and the diffuse radiation is
considered purely isotropic:

Lir = I (W) (4.22)

where I; is modified only by the view factor to the sky.
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4.7 Ground-reflected radiation

The third and last component of the total radiation on the tilted plane
is the radiation reflected from the ground. In reality, numerous objects
such as buildings, different ground materials, trees, etc., reflect incident
radiation onto the tilted surface. A simplified but standard approach is
to assume reflected radiation from one composite source, a horizontal,
diffusely reflecting ground. The ground-reflected radiation on the tilted
plane is then dependent only on the reflectance of the ground and the
view factor to the ground of the tilted surface:

1 —rcosp
o152

where p, is the ground reflectance and I = I + I, is the global radiation
on the horizontal plane. The ground reflectance p, depends on the sur-
roundings. At high latitudes, a seasonal variation in ground reflectance

(4.23)

is likely because of snow coverage in the winter.

4.8 Complete model for tilted plane global radiation

The complete model for global radiation on a tilted plane is:
It = Iyr + Igr + 17 (4.24)

With the formulae for each component in Equations 4.16, 4.22 and 4.23
the complete model is:

1+ cos 3

h:hm+@kyﬂm( 5

>+A£4+

1 ——cosp
=)

(4.25)
+(Ip + La)py (

4.9 Some notes on optimization of surface orientation

Some general rules of thumb can be drawn up about how a surface should
be tilted to maximize collection of solar radiation over a certain period of
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time. Further details can be found, e.g., in [14]. In general, the surface
should be oriented so that the incidence angle 6 is as close to zero as
possible, as often as possible. Only a two-axis tracking system can keep
the incidence angle at zero at all times. For a fixed surface we have to
find an orientation that is suboptimal on most occasions but as good as
possible over a longer period of time.

The azimuth angle v should be chosen so that the surface catches the Sun
when it is at its highest point on the sky. On the northern hemisphere the
surface should be directed south and on the southern hemisphere north.
Exceptions include if there is some object shading the Sun (if there is
shading in the east, the surface should be oriented west and vice versa),
if there are systematic climatic conditions favoring morning or evening
sun or if the collection should match some specific demand profile with
peaks in the morning or evening (which applies mainly to off-grid PV
systems).

The surface tilt 5 depends on which season the collection is optimized
for. Summer collection favors lower tilt angles than annual collection
and winter collection requires even higher tilts. For sites within 30°
of the equator annual energy collection is optimized when the tilt is
set roughly equal to the latitude. At higher latitudes lower tilt angles
are more favorable in summer because more energy is available in the
summer than at lower latitudes. A high albedo further favors high tilt
angles because it is better with a higher view factor to the ground.
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Chapter 5

Exercises

Check your understanding

These questions cover the most important concepts. All answers are
found in the sections above.

1. Describe, qualitatively, how the radiation emitted from a black-body
changes when its temperature increases. How are the total radiation
and the wavelength distribution affected?

2. Explain how the Sun’s surface temperature can be determined by
measuring the flux of solar radiation outside Earth’s atmosphere.

3. What is the solar constant and why does it vary over the year?

4. Which wavelength bands are electromagnetic radiation commonly
divided into? In what way are these wavelength bands relevant in
solar engineering?

5. How do the wavelength spectra for extraterrestrial radiation and
radiation on Earth’s surface differ?” What is the explanation for
these differences?

6. What is the air mass and how can it be approximated?
7. What is the AM1.5 spectrum? Why is it useful in solar engineering?

8. Explain the difference between diffuse and beam radiation. Why
does solar radiation arrive at Earth’s surface in these two forms?
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10.

11.

12.

13.

14.

15.
16.

. What quantities does the Angstrém equation relate?

What are the summer and winter solstices and the equinoxes? How
are they related to the Sun’s declination?

Describe, for latitudes between the tropics and the polar circles, how
the Sun’s apparent path across the sky changes between the winter
and summer solstice.

Suggest a setup of measurement devices to monitor beam and diffuse
radiation on the horizontal plane.

In what ways does solar time differ from local clock time?

What is the difference between the angle of incidence and the zenith
angle of incidence? Why are these useful when determining the
beam radiation incident on a surface?

Explain in a qualitative way what the view factor of a surface is.

Describe, qualitatively, how diffuse radiation is handled in the Hay
and Davies model when:

(a) The weather is clear.

(b) The sky is completely overcast.

Problems

1.

Compare two black-bodies, one with temperature 500 K and one
with temperature 3000 K.

(a) How do they differ in terms of peak wavelength?

(b) How much total radiation is emitted from each of them?

. A futuristic concept known as a Dyson sphere envisions the entire

Sun being covered with PV panels. If such a megastructure of panels
was placed around the Sun, covering it entirely, what would be it’s
total power output, given a PV panel efficiency of 15%7
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3. What would the solar constant at the planet Mars be if you know
that it is 1367 W/m? at Earth? The mean distance between the Sun
and Mars is 227.9 million kilometers.

4. Which zenith angle of incidence and Sun altitude angle correspond
to AM1.57

5. What is the difference in solar time (rounded to whole minutes)
between the Swedish cities Géteborg (57.70° N, 12.00° E) and Lulea
(65.55° N, 22.13° E)?

6. Find a simplified formula for the angle of incidence of beam radiation
on a plane that has azimuth angle 0° and is tilted 90°. The expression
should depend only on the declination, latitude and hour angle.

7. Three neighbours in Grastorp, Sweden (58.33° N, 12.67° E), have in-
stalled PV arrays on their houses. These arrays are mounted directly
on:

(a) A flat horizontal roof.
(b) A vertical wall facing south.
(¢) A roof facing west, tilted 30°.

On the 23rd of July at 15:30 (standard clock time with summer hour
shift), the neighbours are arguing about which array faces the Sun
most directly at this time (i.e. for which the angle of incidence of
beam radiation is smallest). Which one does? (A bit of help: 23rd
of July is the 204th day of the year and the equation of time on this
day is —6.47 minutes.)

8. For many practical applications involving solar energy, it is often
useful to know when the Sun rises and sets.

(a) Derive expressions for the sunset and sunrise hour angle of the
horizontal plane, i.e. the hour angle for which the Sun is pre-
cisely at the edge of a horizontally oriented surface. (Hint: The
expressions will be symmetrical, differing only by the sign.)

(b) Use these expressions to find the standard clock time at which
the Sun rises and sets in Grastorp on the same date as in the
previous problem.
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9. If you know the zenith angle at solar noon, how should you orient a
surface to face the Sun directly at this particular time?
10. Consider again the two tilted arrays in Problem 6.

(a) Which are the corresponding geometric factors for beam radia-
tion at 15:30 on July 23rd?

(b) Assume that the area of each array is 10 m?. How much beam
radiation would these arrays receive if the beam radiation on the
horizontal plane is 500 W/m? at this time?

11. Find a simplified expression for the zenith incidence angle at solar
noon on the day of the spring or autumn equinox.
12. On a spring day (which happens to be the day of the spring equinox)

a group of engineering students have gathered for a picnic at solar
noon in Eslov, Sweden (55.83° N, 13.30° E). One of them has brought
a homebuilt electric stove powered by a PV array, but the others
are unsure if it will be able to collect enough solar energy. At solar
noon on this day, the horizontal plane receives 621 W/m? of global
radiation, of which 236 W/m? are diffuse.

(a) It is decided that the PV array is oriented to collect as much
beam radiation as possible at solar noon. Which tilt and azimuth
angles should be chosen?

(b) Assuming that the ground has an albedo of 20%, how much dif-
fuse, beam and ground-reflected radiation does the array collect
at this orientation? Use the Hay and Davies model for diffuse
radiation. Extraterrestrial radiation with normal incidence on

this day is 1376 W /m?.
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Answers to problems

10.
11.
12.

NS v ®

. (a) 5.8 and 0.97 pm, respectively. (b) 3.5 kW /m? and 4.6 MW /m?.
15% of the total radiative power of the Sun, or 5.79 x 10> W. Notice
also that this does not depend on the radius of the Dyson sphere.
588.2 W /m?.

Zenith angle 48.2°, Sun altitude angle 41.8°.

41 minutes.

cosf, = —sind cos ¢ + cos d sin ¢ cos w.

Beam radiation on these three arrays has incidence angles (a) 45.4°,

(b) 60.8°, (c) 58.8°. Array (a) wins.

(a) Sunset hour angle: w = arccos(— tan ¢ tan ), sunrise hour angle:
w = —arccos(—tan ¢ tand). (b) The Sun rises at 03:51 and sets at
20:40 (04:51 and 21:40 with summer hour shift). Note that this
result may differ by several minutes from more detailed calculations
of sunrise and sunset that take into account the angular diameter of
the Sun and use other, more precise expressions for declination and
the equation of time.

.y=0,8=24,.
(a) 0.695 and 0.738, respectively. (b) 3.48 and 3.69 kW per array.
0, = ¢.

(a) vy =0, 8 = 55.83°. (b) Gy = 685 W/m?, Gqr = 302 W/m?,
GgT = 27.2 W/m2
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Appendix A

Derivation of the incidence angles
of beam radiation

A.1 Zenith angle of incidence

The zenith angle 6, is the angle between the normal to the horizontal
plane at a given location, and the incident beam radiation. The geomet-
ric components involved in finding an expression for 6, are outlined in
Figure A.1. The figure shows the local horizontal plane at some arbitrary
location on Earth. The plane is defined by its inclination with respect to
the celestial equator, which is the projection of Earth’s equator on the
celestial sphere. The angle between the equator plane and the normal
vector of the local plane (v) is equal to the latitude ¢ of the location.

Over the course of the day, Earth rotates with respect to the celestial
sphere, making a complete cycle in one day. This movement is indicated
by the hour angle w, which is the angle between the position of the
current local meridian L;,. of Earth (as projected on the equator plane)
and the meridian’s position at solar noon, L,,.,. The Sun’s position on
the celestial sphere is further defined by the declination d, which is the
angular displacement of the Sun from the equator plane. The incidence
angle 6, can now be found as the angle between the vector w, which
points from the center of the celestial sphere to the Sun’s position, and
the normal vector v of the horizontal plane.

A convenient choice of coordinate system is to have the x axis pointing in
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Figure A.1: Outline of the geometric relations between the Sun, the celestial equator
and the horizontal plane of Earth at a given location.

the direction of L., the y axis orthogonally to x in the equator plane, and
z normal to the equator plane. This makes it possible to directly identify
the components of the vectors u and v from the angles in Figure A.1.
Since v by definition is in the xz plane, its components are given solely
by the angle ¢ as:

v = (cos ¢, 0,sin ¢)" (A.1)

The vector w is displaced from the zz plane by the angle w, and by the
angle § from the zy plane, giving the following vector components:

u = (cosw, sinw, tan §)" (A.2)
which can be scaled into a unit vector by multiplying with cos¢:
u = (cosd cosw, cos dsinw, sin )" | (A.3)

Now, since both w and v are unit vectors, the cosine of the angle 6,
between them are given by the dot product:

cosf, = u ® v = cos ¢ cos d cosw + sin ¢ sin d (A.4)
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A.2 Incidence angle on an arbitrarily oriented plane

The incidence angle of beam radiation on an arbitrarily tilted plane is a
bit more tricky to derive. Figure A.2 shows how a tilted surface is placed
on the horizontal plane of Earth. The orientation of the tilted plane is
defined by the azimuth angle v and the tilt angle 5, defined with respect
to the local meridian and the normal of the horizontal plane, respectively.
What we now want to find is the angle 6 between the Sun vector u and
the normal vector w of the tilted plane.

Tilted
surface

equator

Figure A.2: The geometric relations between the horizontal plane and an arbitrarily
oriented surface.

As Figure A.2 indicates, w can be found by first rotating v around the y
axis by the angle 5, then rotating this vector around the original direction
of v by the angle ~. A first step, to make this rotation conveniently, is
to change the basis of the coordinate system so that x is pointing in the
direction of v while keeping the same y direction. This means that the
new base vectors are:

i = v = (cos ¢,0,sin gb)T
j=1(0,1,0"
k=vxj= (—sin(b,O,cosgb)T
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The transformation matrix for this operation is:

, cos¢ 0 sing
A:(i J k)_ = 0 1 0
—sing 0 coso

i.e. a rotation around the y axis by the latitude angle. Applying this
transformation to the Sun vector u we get:

COS ¢ COS 0 COs W + sin ¢ sin d
u’ = Au = coS 0 sin w
— sin ¢ cos d cos w + cos ¢ sin d

Since the normal vector of the horizontal plane is equal to the new ¢ base
vector, we simply have v’ = (1,0,0).

Now, to find the normal to the tilted plane, w’, we rotate v’ an angle 3
around the y axis, then an angle v around the new x axis:

1 0 0 cosp 0 sinf cos 3
w’ = |0 cosy —sinvy 0 1 0 v’ = | sinysinf
0 siny cos~y —sinf 0 cospf — cosysin 3

As before, we can now find the cosine of the angle 6 as the dot product
between u’ and w’:

cosf = u’ e w’ =sind sin ¢ cos
— sin d cos ¢ sin 3 cos
+ cos § cos ¢ cos 3 cos w
+ cos ¢ sin ¢ sin 5 cos 7y cos w

+ cos d sin 3 sin y sin w
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